In vitro study of the ecotoxicological risk of methylisothiazolinone and chloroxylenol towards soil bacteria

Author:

Nowak-Lange Marta,Niedziałkowska Katarzyna,Bernat Przemysław,Lisowska Katarzyna

Abstract

AbstractMethylisothiazolinone (MIT) and chloroxylenol (PCMX) are popular disinfectants often used in personal care products (PCPs). The unregulated discharge of these micropollutants into the environment, as well as the use of sewage sludge as fertilizer and reclaimed water in agriculture, poses a serious threat to ecosystems. However, research into their ecotoxicity towards nontarget organisms is very limited. In the present study, for the first time, the ecotoxicity of biocides to Pseudomonas putida, Pseudomonas moorei, Sphingomonas mali, and Bacillus subtilis was examined. The toxicity of MIT and PCMX was evaluated using the microdilution method, and their influence on the viability of bacterial cells was investigated by the AlamarBlue® test. The ability of the tested bacteria to form biofilms was examined by a microtiter plate assay. Intracellular reactive oxygen species (ROS) production was measured with CM-H2DCFDA. The effect of MIT and PCMX on phytohormone indole-3-acetic acid (IAA) production was determined by spectrophotometry and LC‒MS/MS techniques. The permeability of bacterial cell membranes was studied using the SYTOX Green assay. Changes in the phospholipid profile were analysed using LC‒MS/MS. The minimal inhibitory concentrations (MICs) values ranged from 3.907 to 15.625 mg L−1 for MIT and 62.5 to 250 mg L−1 for PCMX, indicating that MIT was more toxic. With increasing concentrations of MIT and PCMX, the cell viability, biofilm formation ability and phytohormone synthesis were maximally inhibited. Moreover, the growth of bacterial cell membrane permeability and a significantly increased content of ROS were observed, indicating that the exposure caused serious oxidative stress and homeostasis disorders. Additionally, modifications in the phospholipid profile were observed in response to the presence of sublethal concentrations of the chemicals. These results prove that the environmental threat posed by MIT and PCMX must be carefully monitored, especially as their use in PCPs is still growing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3