Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment

Author:

Asaeda Takashi,Rahman Mizanur,Abeynayaka Helayaye Damitha Lakmali

Abstract

AbstractThe effect of combined stresses, photoinhibition, and nutrient depletion on the oxidative stress of cyanobacteria was measured in laboratory experiments to develop the biomass prediction model. Phormidium ambiguum was exposed to various photosynthetically active radiation (PAR) intensities and phosphorous (P) concentrations with fixed nitrogen concentrations. The samples were subjected to stress assays by detecting the hydrogen peroxide (H2O2) concentration and antioxidant activities of catalase (CAT) and superoxide dismutase (SOD). H2O2 concentrations decreased to 30 µmol m−2 s−1 of PAR, then increased with higher PAR intensities. Regarding P concentrations, H2O2 concentrations (nmol L−1) generally decreased with increasing P concentrations. SOD and CAT activities were proportionate to the H2O2 protein−1. No H2O2 concentrations detected outside cells indicated the biological production of H2O2, and the accumulated H2O2 concentration inside cells was parameterized with H2O2 concentration protein−1. With over 30 µmol m−2 s−1 of PAR, H2O2 concentration protein−1 had a similar increasing trend with PAR intensity, independently of P concentration. Meanwhile, with increasing P concentration, H2O2 protein−1 decreased in a similar pattern regardless of PAR intensity. Protein content decreased with gradually increasing H2O2 up to 4 nmol H2O2 mg−1 protein, which provides a threshold to restrict the growth of cyanobacteria. With these results, an empirical formula—protein (mg L−1) = − 192*Log((H2O2/protein)/4.1), where H2O2/protein (nmol mg−1) = − 0.312*PAR2/(502 + PAR2)*((25/PAR)4 + 1)*Log(P/133,100), as a function of total phosphorus concentration, P (µg L−1)—was developed to obtain the cyanobacteria biomass.

Funder

Grant-in-Aid for Scientific Research

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3