Reconfigurable integrated structures with functions of Fabry–Perot antenna and wideband liquid absorber for radar system stealth

Author:

Zou Yukun,Kong Xiangkun,Cao Zuwei,Zhang Xinyu,Zhao Yongjiu

Abstract

AbstractThis paper proposes a functionally reconfigurable integrated structure of a Fabry–Perot (FP) antenna and wideband liquid absorber. First, a two-layer partial reflecting surface (PRS) has been designed. Then, a patch antenna is used to act as the source antenna. By combining the source antenna with the PRS, an FP antenna has been designed. What’s more, taking full advantage of the reflective properties of PRS, a liquid broadband absorber is then designed. Last, the integrated structure with two functions has been realized. It can be used as the FP antenna or the liquid absorber through the extraction and injection of ethanol. In this way, it is effective to switch between stealth and detection states which can be used in different electromagnetic environments. The PRS is elaborately tailored to serve as both a component of the FP antenna and the metal ground of the broadband liquid absorber. Then the integrated structure is realized by combining the FP antenna with the liquid absorber. The PRS is composed of patches on the top layer of the substrate and the square loop on the bottom. The liquid absorber is composed of a 3-D printed container, 45% ethanol layer and the PRS is used to serve as the metal ground. The formula of Mie resonance theory has been extended and used to design the liquid absorber. The gain of the antenna is 19.7 dBi when the ethanol is extracted. When the ethanol is injected, a wideband liquid absorber is achieved. The absorption band (S11 < − 10 dB) ranges from 4 to 18 GHz. The absorption bandwidth is over 133%. The monostatic RCS reduction bands of the structure with ethanol range from 4 to 18 GHz and the average RCS reduction is 28.4 dBsm. The measured and simulated results are in good agreement.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Open Research Program in China’s State Key Laboratory of Millimeter Waves

Key Laboratory of Radar Imaging and Microwave Photonics

Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wideband RCS Reduction of Fabry-Perot Antenna Based on Diffuse Scattering Method;2024 Photonics & Electromagnetics Research Symposium (PIERS);2024-04-21

2. Dielectric‐Based Metamaterials for Near‐Perfect Light Absorption;Advanced Functional Materials;2024-03-17

3. Wideband RCS Reduction of Fabry-Perot Resonator Antenna Based on Diffuse Scattering Method;Progress In Electromagnetics Research M;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3