Author:
Jaiswal Amit Kumar,Truong Hellen,Tran Tiffany M.,Lin Tasha L.,Casero David,Alberti Michael O.,Rao Dinesh S.
Abstract
AbstractPost-transcriptional gene regulation, including that by RNA binding proteins (RBPs), has recently been described as an important mechanism in cancer. We had previously identified a set of RBPs that were highly dysregulated in B-cell acute lymphoblastic leukemia (B-ALL) with MLL translocations, which carry a poor prognosis. Here, we sought to functionally characterize these dysregulated RBP genes by performing a focused CRISPR dropout screen in B-ALL cell lines, finding dependencies on several genes including EIF3E, EPRS and USO1. Validating our findings, CRISPR/Cas9-mediated disruption of USO1 in MLL-translocated B-ALL cells reduced cell growth, promoted cell death, and altered the cell cycle. Transcriptomic analysis of USO1-deficient cells revealed alterations in pathways related to mTOR signaling, RNA metabolism, and targets of MYC. In addition, USO1-regulated genes from these experimental samples were significantly and concordantly correlated with USO1 expression in primary samples collected from B-ALL patients. Lastly, we found that loss of Uso1 inhibited colony formation of MLL-transformed in primary bone marrow cells from Cas9-EGFP mice. Together, our findings demonstrate an approach to performing focused sub-genomic CRISPR screens and highlight a putative RBP vulnerability in MLL-translocated B-ALL, thus identifying potential therapeutic targets in this disease.
Funder
NCI
National Cancer Institute
NIH/NIAID
Margaret E. Early Trust
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献