GS-DeepNet: mastering tokamak plasma equilibria with deep neural networks and the Grad–Shafranov equation

Author:

Joung Semin,Ghim Y.-C.,Kim Jaewook,Kwak Sehyun,Kwon Daeho,Sung C.,Kim D.,Kim Hyun-Seok,Bak J. G.,Yoon S. W.

Abstract

AbstractThe force-balanced state of magnetically confined plasmas heated up to 100 million degrees Celsius must be sustained long enough to achieve a burning-plasma state, such as in the case of ITER, a fusion reactor that promises a net energy gain. This force balance between the Lorentz force and the pressure gradient force, known as a plasma equilibrium, can be theoretically portrayed together with Maxwell’s equations as plasmas are collections of charged particles. Nevertheless, identifying the plasma equilibrium in real time is challenging owing to its free-boundary and ill-posed conditions, which conventionally involves iterative numerical approach with a certain degree of subjective human decisions such as including or excluding certain magnetic measurements to achieve numerical convergence on the solution as well as to avoid unphysical solutions. Here, we introduce GS-DeepNet, which learns plasma equilibria through solely unsupervised learning, without using traditional numerical algorithms. GS-DeepNet includes two neural networks and teaches itself. One neural network generates a possible candidate of an equilibrium following Maxwell’s equations and is taught by the other network satisfying the force balance under the equilibrium. Measurements constrain both networks. Our GS-DeepNet achieves reliable equilibria with uncertainties in contrast with existing methods, leading to possible better control of fusion-grade plasmas.

Funder

National Research Foundation of Korea

Korea Institute of Fusion Energy, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3