Author:
Choi Seung Jun,Kim DongEung,La Moonwoo,Kim Moon-Jo
Abstract
AbstractGrain refinement is a crucial issue in metallic materials. One of the emerging techniques to obtain equiaxed grains is to apply an electric current to the liquid metal during solidification. With this view, in this paper, the effect of electric current on the solidification behavior in various cavity shapes of mold was investigated. Cylinder-, cube-, and cuboid-shaped cavities designed to have similar cavity volume were used. By applying an electric current during the solidification of liquid aluminum, the grains were effectively refined with a grain size of approximately 350 µm for all three types of cavities. The circulating flow of liquid aluminum was observed to have a similar shear rate intensity in all three types of cavities, which is known to be sufficiently high (over hundreds of s−1) to induce dendrite fragmentation resulting newly generated nuclei. Dispersion of nuclei on unsolidified aluminum appeared differently according to the shape of the cavity, which influences final shape of refined zone. The area fraction of refined zone was affected by the relative relationship between the solidification completion time and the electric current application time. This study will provide insight to control of process parameters when electrically-assisted solidification is applied to a real product with a complex shape.
Funder
Ministry of Trade, Industry and Energy
Korea Institute of Industrial Technology
Korea University of Technology and Education
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献