A deep learning approach for electric motor fault diagnosis based on modified InceptionV3

Author:

Xu Lifu,Teoh Soo Siang,Ibrahim Haidi

Abstract

AbstractElectric motors are essential equipment widely employed in various sectors. However, factors such as prolonged operation, environmental conditions, and inadequate maintenance make electric motors prone to various failures. In this study, we propose a thermography-based motor fault detection method based on InceptionV3 model. To enhance the detection accuracy, we apply Contrast Limited Adaptive Histogram Equalization (CLAHE) to the input images. Furthermore, we improved the performance of the InceptionV3 by integrating a Squeeze-and-Excitation (SE) channel attention mechanism. The proposed model was tested using a dataset containing 369 thermal images of an electric motor with 11 types of faults. Image augmentation was employed to increase the data size and the evaluation was conducted using fivefold cross validation. Experimental results indicate that the proposed model can achieve accuracy, precision, recall, and F1 score of 98.82%, 98.93%, 98.82%, and 98.87%, respectively. Additionally, by freezing the fully connected layers of the InceptionV3 model for feature extraction and training a Support Vector Machines (SVM) to perform classification, it is able to achieve 100% detection rate across all four evaluation metrics. This research contributes to the field of industrial motor fault diagnosis. By incorporating deep learning techniques based on InceptionV3 and SE channel attention mechanism with a traditional classifier, the proposed method can accurately classify different motor faults.

Funder

Universiti Sains Malaysia Research University Grant

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3