Night target detection algorithm based on improved YOLOv7

Author:

Bowen Zheng,Huacai Lu,Shengbo Zhu,Xinqiang Chen,Hongwei Xing

Abstract

AbstractAiming at the problems of error detection and missing detection in night target detection, this paper proposes a night target detection algorithm based on YOLOv7(You Only Look Once v7). The algorithm proposed in this paper preprocesses images by means of square equalization and Gamma transform. The GSConv(Group Separable Convolution) module is introduced to reduce the number of parameters and the amount of calculation to improve the detection effect. ShuffleNetv2_×1.5 is introduced as the feature extraction Network to reduce the number of Network parameters while maintaining high tracking accuracy. The hard-swish activation function is adopted to greatly reduce the delay cost. At last, Scylla Intersection over Union function is used instead of Efficient Intersection over Union function to optimize the loss function and improve the robustness. Experimental results demonstrate that the average detection accuracy of the proposed improved YOLOv7 model is 88.1%. It can effectively improve the detection accuracy and accuracy of night target detection.

Publisher

Springer Science and Business Media LLC

Reference21 articles.

1. Wang, J. Y. & Fang, J. A method for estimating the number of people in dense places based on YOLOv5. J. Jilin Univ. 39, 682–687 (2021).

2. Perveen, K. et al. Deep learning-based multiscale CNN-based U Network model for leaf disease diagnosis and segmentation of lesions in tomato. Physiol. Mol. Plant Pathol. 128, 255–261 (2023).

3. Kumar, P., McElhinney, C. P., Lewis, P. & McCarthy, T. Automated road marking extraction from mobile laser scanning data. Int. J. Appl. Earth Observ. Geoinf. 32, 125–137 (2014).

4. Gu, D. Y., Luo, J. L. & Li, W. C. Traffic target detection in complex scenarios based on improved YOLOv5 algorithm. J. Northeast. Univ. 43, 1073–1079 (2022).

5. Guan, H., Li, H. T. & Li, W. C. Research on UAV night target detection technology based on YOLOv5. Radio Commun. Technol. 49, 345–350 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3