Author:
Ramachandran Tayaallen,Faruque Mohammad Rashed Iqbal,Al-mugren K. S.
Abstract
AbstractThis study presented a unique, miniaturised asymmetric interconnected vertical stripe (IVS) design for terahertz (THz) frequency applications. Therefore, this research aimed to achieve a frequency response of 0 to 10 THz using a 5 × 5 µm2 Silicon (Si) substrate material. Meanwhile, various parametric examinations were conducted to investigate variations in the performance. For example, the unit cell selection process was carefully examined by using various design structures and modifying the structure by adding split gaps and connecting bars between vertical stripes. Furthermore, the proposed sandwich structure design was used to compute the absorbance and reflectance properties. All the analytical examinations were executed utilising the Computer Simulation Technology (CST) 2019 software. The introduced IVS metamaterial exhibits negative index behaviour and has a single resonance frequency of 5.23 THz with an acceptable magnitude of − 24.38 dB. Additionally, the quadruple-layer IVS structure exhibits optimised transmission coefficient behaviour between 3 and 6 THz and 7 to 9 THz, respectively. However, the magnitude of the transmission coefficient increased with the number of material layers. Besides that, the absorbance study shows that using a quadruple-layer structure obtains unique and promising results. Overall, the proposed asymmetric IVS metamaterial design achieves the required performance by using a compact structure rather than extending the dimensions of the design.
Funder
Ministry of Education (MOE), MY
Princess Nourah bint Abdulrahman University Researchers Supporting Project number
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献