Wave-driven electron inward transport in a magnetic nozzle

Author:

Takahashi Kazunori,Charles Christine,Boswell Rod W.

Abstract

AbstractPlasma flows in divergent magnetic fields resembling a magnetic nozzle can be found over wide scales ranging from astrophysical objects to terrestrial plasma devices. Plasma detachment from a magnetic nozzle is a frequent occurrence in natural plasmas, e.g., plasma ejection from the Sun and release from the Sun’s magnetic field, forming the solar wind. Plasma detachment has also been a challenging problem relating to space propulsion devices utilizing a magnetic nozzle, especially the detachment of the magnetized electrons having a gyro-radius smaller than the system’s scale is required to maintain zero net current exhausted from the system. Here we experimentally demonstrate that a cross-field transport of the electrons toward the main nozzle axis, which contributes to neutralizing the ions detached from the nozzle, is induced by the spontaneously excited magnetosonic wave having the frequency considerably higher than the ion cyclotron frequency and close to the lower hybrid frequency, driving an E × B drift that only effects the electrons. Wave-induced transport and loss have been one of many important issues in plasma physics over the past several decades. Conversely, the presently observed electron inward transport has a beneficial effect on the detachment by reducing the divergence of the expanding plasma beam; this finding will open a new perspective for the role of waves and instabilities in plasmas.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Casio Science Promotion Foundation

Futaba Electronics Memorial Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3