In-situ DRIFT investigation of photocatalytic reduction and oxidation properties of SiO2@α-Fe2O3 core-shell decorated RGO nanocomposite

Author:

Kasimayan Uma,Nadarajan Arjun,Singaravelu Chandra MohanORCID,Pan Guan-Ting,Kandasamy Jothivenkatachalam,Yang Thomas C.-K.,Lin Ja-Hon

Abstract

AbstractIn this work, SiO2@α-Fe2O3 core-shell decorated RGO nanocomposites were prepared via a simple sol-gel method. The nanocomposites were prepared with different weight percentages (10, 30, and 50 wt %) of the SiO2@α-Fe2O3 core-shell on RGO, and the effects on the structural and optical properties were identified. The photocatalytic reduction and oxidation properties of the nanocomposites in the gas phase were assessed through the reduction of CO2 and oxidation of ethanol using in-situ diffuse-reflectance infrared fourier transform spectroscopy (DRIFT). The prepared nanocomposite with (30 wt %) of SiO2@α-Fe2O3 showed superior photocatalytic activity for the gas phase reduction of CO2 and oxidation of ethanol. Enhancement in the activity was also perceived when the light irradiation was coupled with thermal treatment. The DRIFT results for the nanocomposites indicate the active chemical conversion kinetics of the redox catalytic effect in the reduction of CO2 and oxidation of ethanol. Further, the evaluation of photoelectrochemical CO2 reduction performance of nanocomposites was acquired by linear sweep voltammetry (LSV), and the results showed a significant improvement in the onset-potential (–0.58 V) for the RGO (30 wt %)-SiO2@α-Fe2O3 nanocomposite.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3