A ResNet-LSTM hybrid model for predicting epileptic seizures using a pretrained model with supervised contrastive learning

Author:

Lee Dohyun,Kim Byunghyun,Kim Taejoon,Joe Inwhee,Chong Jongwha,Min Kyeongyuk,Jung Kiyoung

Abstract

AbstractIn this paper, we propose a method for predicting epileptic seizures using a pre-trained model utilizing supervised contrastive learning and a hybrid model combining residual networks (ResNet) and long short-term memory (LSTM). The proposed training approach encompasses three key phases: pre-processing, pre-training as a pretext task, and training as a downstream task. In the pre-processing phase, the data is transformed into a spectrogram image using short time Fourier transform (STFT), which extracts both time and frequency information. This step compensates for the inherent complexity and irregularity of electroencephalography (EEG) data, which often hampers effective data analysis. During the pre-training phase, augmented data is generated from the original dataset using techniques such as band-stop filtering and temporal cutout. Subsequently, a ResNet model is pre-trained alongside a supervised contrastive loss model, learning the representation of the spectrogram image. In the training phase, a hybrid model is constructed by combining ResNet, initialized with weight values from the pre-trained model, and LSTM. This hybrid model extracts image features and time information to enhance prediction accuracy. The proposed method’s effectiveness is validated using datasets from CHB-MIT and Seoul National University Hospital (SNUH). The method’s generalization ability is confirmed through Leave-one-out cross-validation. From the experimental results measuring accuracy, sensitivity, and false positive rate (FPR), CHB-MIT was 91.90%, 89.64%, 0.058 and SNUH was 83.37%, 79.89%, and 0.131. The experimental results demonstrate that the proposed method outperforms the conventional methods.

Funder

Institute of Information and communications Technology Planning and Evaluation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3