Author:
Arya Nikhilanand,Saha Sriparna
Abstract
AbstractBreast cancer is the fifth leading cause of death in females worldwide. Early detection and treatment are crucial for improving health outcomes and preventing more serious conditions. Analyzing diverse information from multiple sources without errors, particularly with the growing burden of cancer cases, is a daunting task for humans. In this study, our main objective is to improve the accuracy of breast cancer survival prediction using a novel ensemble approach. It is novel due to the consideration of deviation (closeness between predicted classes and actual classes) and support (sparsity between predicted classes and actual classes) of the predicted class with respect to the actual class, a feature lacking in traditional ensembles. The ensemble uses fuzzy integrals on support and deviation scores from base classifiers to calculate aggregated scores while considering how confident or uncertain each classifier is. The proposed ensemble mechanism has been evaluated on a multi-modal breast cancer dataset of breast tumors collected from participants in the METABRIC trial. The proposed architecture proves its efficiency by achieving the accuracy, sensitivity, F1-score, and balanced accuracy of 82.88%, 58.64%, 62.94%, and 74.75% respectively. The obtained results are superior to the performance of individual classifiers and existing ensemble approaches.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献