Rapid evolution of phenotypic plasticity in patchy habitats

Author:

Promy Nawsheen T.,Newberry Mitchell,Gulisija Davorka

Abstract

AbstractPhenotypic plasticity may evolve rapidly, enabling a population’s persistence in the face of sudden environmental change. Rapid evolution can occur when there is considerable genetic polymorphism at selected loci. We propose that balancing selection could be one of the mechanisms that sustain such polymorphism for plasticity. We use stochastic Monte Carlo simulations and deterministic analysis to investigate the evolution of a plasticity modifier locus in structured populations inhabiting favorable and adverse environments, i.e. patchy habitats. We survey a wide range of parameters including selective pressures on a target (structural) locus, plasticity effects, population sizes, and migration patterns between demes including periodic or continuous bidirectional and source-sink dynamics. We find that polymorphism in phenotypic plasticity can be maintained under a wide range of environmental scenarios in both favorable and adverse environments due to the balancing effect of population structure in patchy habitats. This effect offers a new plausible explanation for the rapid evolution of plasticity in nature: Phenotypic plasticity may rapidly evolve from genetic variation maintained by balancing selection if the population has experienced immigration from populations under different selection regimes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3