Shaking table test on seismic performance of a large-span high-rise building

Author:

Sun Laite,Bai Yu,Lai Zhengcong

Abstract

AbstractThis paper describes investigations in respect of the seismic performance of a large-span high-rise building in a mountainous area. The building consists of a 135 m high shear wall structure and a 174.5 m long steel truss structure, with dampers used to enhance the seismic performance. A 1/40 scale model of the prototype structure was designed, and shaking table tests was conducted. The experiments simulated the wave passage effect and slope amplification effect based on the building site and structural characteristics of the prototype structure. The seismic performance of the prototype structure was analyzed through the damage phenomenon, dynamic characteristics, and dynamic response of the model under earthquake effects. The results show that three seismic waves were delayed by about 0.4 s and amplified by about 1.6 times after passing through the steel frame with viscous dampers, which could effectively simulate the wave passage effect and slope amplification effect in the test. The maximum story drift ratios of the model shear wall structure and steel truss structure were 1/1258 and 1/455 for the SLE and 1/568 and 1/185 for the MCE. The damping devices played a key role in energy dissipation. As a result, this research provides a reference for the seismic design and shaking table testing of large-span high-rise buildings.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3