The embryo-oil drop assembly: the timing and morphology of a critical event for fish early-life history survival

Author:

Nande Manuel,Pérez Montse,Presa Pablo

Abstract

AbstractEgg specific gravity is of relevance for fish recruitment since the ability to float influences egg and larvae development, dispersal and connectivity between fishing grounds. Using zootechnics, histological approaches, optical and electronic transmission microscopy, this study describes the morphogenetic mechanism of adhesion of the oil-drop covering layer (OCL) to the oil droplet (OD) in embryos of Merluccius merluccius under physical conditions reflecting the marine environment. The herein described primordial (p)OCL is a substructure of the inner yolk syncytial layer which contains egg organella aimed to mobilize lipidic reserves from the oil drop (OD) towards the embryo blood. It is shown that the timely OD-OCL assembly is a critical morphogenetic process for embryo and larvae survival. Such assembly depends on egg buoyance because of its influence on the embryo capacity to rotate within the perivitelline space. Therefore, oil droplet adhesion (ODA) eggs are capable to complete their development while oil droplet non-adhesion eggs (ODNA) dye soon after hatching. We show that gravity-dependent egg buoyance categories exhibit different ODA/ODNA ratios (0–77%) and that relationship diminishes under incubation systems such as sprayers, that do not assure a dynamic seawater surface mixing to avoid egg desiccation. As an adaptive trait, egg gravity strongly depends on oceanic properties such as current dynamics, turbulence, oxygen, rainfall, and salinity, whose rapid changes would likely challenge the sustainability of fisheries recruitment.

Funder

Ministerio de Economía y Competitividad

European Regional Development Fund

Agencia Estatal de Investigación

European Commission

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3