A novel detection method for wheat aging based on the delayed luminescence

Author:

Yue-hong Gong,Yu-kun Liu,Zhi-le Gong,Xiao-yan Zhong,Wei-ting Zhao,Bing Li,Hong-yi Ge,Qiong-shuai Lyu

Abstract

AbstractWheat aging plays an important role in assessing storage wheat quality and its subsequent processing purposes. The conventional detection methods for wheat aging are mainly involved in chemical techniques, which are time-consuming as well as waste part of wheat samples for each detection. Although some physical detection methods have obtained gratifying results, it is extremely hard to expand their application fields but to stay in the theory stage. For this reason, a novel nondestructive detection model for wheat aging based on the delayed luminescence (DL) has been proposed in this paper. Specifically, after collecting enough sample data, we first took advantage of certain hyperbolic function to fit DL signal, and then used four parameters of the hyperbolic function to feature the decay trend of the DL signal. Secondly, in order to better feature the DL signal, we extracted other six features together with above four features to form the input feature vector. Finally, as the bidirectional long short-term memory (Bi-LSTM) network lacked error-correcting performance, the Bi-LSTM network based on Walsh coding (Walsh-Bi-LSTM) mechanism was proposed to establish the detection model, which made the detection model have the error-correcting performance by reasonably splitting the multi-classification target task. Shown by experimental results, the newly proposed wheat aging detection model is able to achieve 94.00% accuracy in the testing dataset, which can be used as a green and nondestructive method to timely reflect wheat aging states.

Funder

Key Scientific and Technological Project of Henan Province, China

Doctoral Research Start-up Fund of Pingdingshan University

Key Scientific Research Project of Universities in Henan Province

Henan Province Key R&D Promotion Special Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3