Effect of β-resin of binderless coke on mechanical properties of high-density carbon blocks at high molding pressure

Author:

Park Seungjoo,Lee Seon Ho,Lee Song Mi,Jung Doo-Hwan

Abstract

AbstractHigh-density carbon blocks have excellent mechanical, thermal, and electrical properties. In particular, these blocks are applied in various fields while maintaining excellent physical properties even in harsh environments. In this study, binderless coke manufactured under certain conditions was used to form green bodies (GBs) under various pressure conditions of 50 to 250 MPa, and the bodies were carbonized to form a high-density carbon block (CB). Then, the effect of the β-resin and oxygen functional groups of binderless coke on the mechanical properties of the high-density carbon block according to molding pressure was considered. When molding at a pressure of under 200 MPa, the ratio of O and C (O/C) has a greater effect, and the larger the O/C, the higher the mechanical properties. On the other hand, when molding at a high pressure of 250 MPa, the β-resin content has a greater effect and steadily increases when the β-resin content is low and when the mechanical properties are sufficiently reduced. In particular, in the case of CB-N7A3–250, which has the highest β-resin content of 3.7 wt%, the density was 1.79 g/cm3, the flexural strength was 106 MPa, and the shore hardness was 99 HSD.

Funder

Ministry of Trade, Industry and Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modification of coal tar pitch by solvent extraction for high density C/C composites;Journal of Industrial and Engineering Chemistry;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3