Comparative transcriptome profiles of human dental pulp stem cells from maxillary and mandibular teeth

Author:

Faruangsaeng Thira,Thaweesapphitak Sermporn,Khamwachirapitak Chompak,Porntaveetus ThantriraORCID,Shotelersuk Vorasuk

Abstract

AbstractThe molecular control of tooth development is different between the maxilla and mandible, contributing to different tooth shapes and locations; however, whether this difference occurs in human permanent teeth is unknown. The aim of this study was to investigate and compare the transcriptome profiles of permanent maxillary and mandibular posterior teeth. Ten participants who had a pair of opposing premolars or molars extracted were recruited. The RNA obtained from cultured dental pulp stem cells underwent RNA-sequencing and qRT-PCR. The transcriptome profiles of two opposing premolar pairs and two molar pairs demonstrated that the upper premolars, lower premolars, upper molars, and lower molars expressed the same top-ranked genes, comprising FN1, COL1A1, COL1A2, ACTB, and EEFIA1, which are involved in extracellular matrix organization, immune system, signal transduction, hemostasis, and vesicle-mediated transport. Comparative transcriptome analyses of each/combined tooth pairs demonstrated that PITX1 was the only gene with different expression levels between upper and lower posterior teeth. PITX1 exhibited a 64-fold and 116-fold higher expression level in lower teeth compared with their upper premolars and molars, respectively. These differences were confirmed by qRT-PCR. Taken together, this study, for the first time, reveals that PITX1 is expressed significantly higher in mandibular posterior teeth compared with maxillary posterior teeth. The difference is more evident in the molars compared with premolars and consistent with its expression pattern in mouse developing teeth. We demonstrate that differences in lower versus upper teeth gene expression during odontogenesis occur in permanent teeth and suggest that these differences should be considered in molecular studies of dental pulp stem cells. Our findings pave the way to develop a more precise treatment in regenerative dentistry such as gene-based therapies for dentin/pulp regeneration and regeneration of different tooth types.

Funder

90th Anniversary of Chulalongkorn University Fund

100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship

Health Systems Research Institute

Ratchadaphiseksomphot Endowment Fund

National Research Council of Thailand

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3