A nomogram for predicting the risk of cancer-related cognitive impairment in breast cancer patients based on a scientific symptom model

Author:

Zhou Zhongtao,Ren Jiajia,Liu Qiankun,Li Shuoshuo,Xu Jiahui,Wu Xiaoyan,Xiao Yuanxiang,Zhang Zipu,Jia Wanchen,Bai Huaiyu,Zhang Jing

Abstract

AbstractCancer-related cognitive impairment is a significant clinical challenge observed in patients with breast cancer, manifesting during or after treatment. This impairment leads to deteriorations in memory, processing speed, attention, and executive functioning, which profoundly impact patients' occupational performance, daily living activities, and overall quality of life. Grounded in the Symptom Science Model 2.0, this study investigates the contributing factors to Cancer-related cognitive impairment in breast cancer patients and develops a predictive nomogram for this demographic. Employing both univariate and multivariate logistic regression analyses, this investigation delineates the predictive factors influencing outcomes in breast cancer patients. A nomogram was constructed leveraging these identified predictive factors, accompanied by internal validation through bootstrap resampling methodology (1000 bootstrap samples). The efficacy of the predictive model was assessed by employing the Hosmer–Lemeshow goodness-of-fit test and calibration curves. The prevalence of cognitive impairment in breast cancer patients was identified to be 45.83%.Multivariate logistic regression analysis identified the independent predictors of Cancer-related cognitive impairment in breast cancer patients as place of residence, educational level, chemotherapy, benefit finding, post-traumatic growth, anxiety, fear of cancer progression, and fasting blood glucose levels. these factors were integrated into the nomogram. The Hosmer–Lemeshow goodness-of-fit test demonstrated that the prediction model was appropriately calibrated (χ2 = 11.520, P = 0.174). Furthermore, the model exhibited an area under the curve of 0.955 (95% CI 0.939 to 0.971) and a sensitivity of 0.906, evidencing its robust discriminative capacity and accuracy. Utilizing the Symptom Science Model 2.0 as a framework, this study comprehensively examines the multifaceted factors influencing Cancer-related cognitive impairment in breast cancer patients, spanning five critical domains: complex symptoms, phenotypic characterization, biobehavioral factors, social determinants of health, and patient-centered experiences. A predictive nomogram model was established, demonstrating satisfactory predictive accuracy and capability. This model is capable of identifying breast cancer patients with cognitive impairments with high precision. The findings furnish empirical evidence in support of the early detection, diagnosis, and intervention strategies for high-risk breast cancer patients afflicted with Cancer-related cognitive impairment.

Funder

Anhui University natural science research project

Anhui Province Fund for High-level Teaching Team

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3