Domain adaptation via Wasserstein distance and discrepancy metric for chest X-ray image classification

Author:

He Bishi,Chen Yuanjiao,Zhu Darong,Xu Zhe

Abstract

AbstractDeep learning technology can effectively assist physicians in diagnosing chest radiographs. Conventional domain adaptation methods suffer from inaccurate lesion region localization, large errors in feature extraction, and a large number of model parameters. To address these problems, we propose a novel domain-adaptive method WDDM to achieve abnormal identification of chest radiographic images by combining Wasserstein distance and difference measures. Specifically, our method uses BiFormer as a multi-scale feature extractor to extract deep feature representations of data samples, which focuses more on discriminant features than convolutional neural networks and Swin Transformer. In addition, based on the loss minimization of Wasserstein distance and contrast domain differences, the source domain samples closest to the target domain are selected to achieve similarity and dissimilarity across domains. Experimental results show that compared with the non-transfer method that directly uses the network trained in the source domain to classify the target domain, our method has an average AUC increase of 14.8% and above. In short, our method achieves higher classification accuracy and better generalization performance.

Funder

Science and Technology Plan Project of Hangzhou China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3