Connectionist technique estimates of hydrogen storage capacity on metal hydrides using hybrid GAPSO-LSSVM approach

Author:

Maghsoudy Sina,Zakerabbasi Pouya,Baghban Alireza,Esmaeili Amin,Habibzadeh Sajjad

Abstract

AbstractThe AB2 metal hydrides are one of the preferred choices for hydrogen storage. Meanwhile, the estimation of hydrogen storage capacity will accelerate their development procedure. Machine learning algorithms can predict the correlation between the metal hydride chemical composition and its hydrogen storage capacity. With this purpose, a total number of 244 pairs of AB2 alloys including the elements and their respective hydrogen storage capacity were collected from the literature. In the present study, three machine learning algorithms including GA-LSSVM, PSO-LSSVM, and HGAPSO-LSSVM were employed. These models were able to appropriately predict the hydrogen storage capacity in the AB2 metal hydrides. So the HGAPSO-LSSVM model had the highest accuracy. In this model, the statistical factors of R2, STD, MSE, RMSE, and MRE were 0.980, 0.043, 0.0020, 0.045, and 0.972%, respectively. The sensitivity analysis of the input variables also illustrated that the Sn, Co, and Ni elements had the highest effect on the amount of hydrogen storage capacity in AB2 metal hydrides.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3