Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study

Author:

Raita Yoshihiko,Camargo Carlos A.,Macias Charles G.,Mansbach Jonathan M.,Piedra Pedro A.,Porter Stephen C.,Teach Stephen J.,Hasegawa Kohei

Abstract

AbstractWe aimed to develop machine learning models to accurately predict bronchiolitis severity, and to compare their predictive performance with a conventional scoring (reference) model. In a 17-center prospective study of infants (aged < 1 year) hospitalized for bronchiolitis, by using routinely-available pre-hospitalization data as predictors, we developed four machine learning models: Lasso regression, elastic net regression, random forest, and gradient boosted decision tree. We compared their predictive performance—e.g., area-under-the-curve (AUC), sensitivity, specificity, and net benefit (decision curves)—using a cross-validation method, with that of the reference model. The outcomes were positive pressure ventilation use and intensive treatment (admission to intensive care unit and/or positive pressure ventilation use). Of 1,016 infants, 5.4% underwent positive pressure ventilation and 16.0% had intensive treatment. For the positive pressure ventilation outcome, machine learning models outperformed reference model (e.g., AUC 0.88 [95% CI 0.84–0.93] in gradient boosted decision tree vs 0.62 [95% CI 0.53–0.70] in reference model), with higher sensitivity (0.89 [95% CI 0.80–0.96] vs. 0.62 [95% CI 0.49–0.75]) and specificity (0.77 [95% CI 0.75–0.80] vs. 0.57 [95% CI 0.54–0.60]). The machine learning models also achieved a greater net benefit over ranges of clinical thresholds. Machine learning models consistently demonstrated a superior ability to predict acute severity and achieved greater net benefit.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3