Impedance sources (Z sources) with inherent fault protection for resilient and fire-free electricity grids

Author:

Peng Fang Zheng

Abstract

AbstractModern societies would not survive without electricity and at the same time electrical faults could cause and have caused many catastrophes—mainly deadly fires—to our societies. There are two types of electricity sources: the voltage source such as generators, charged batteries and capacitors, and the current source such as charged inductors, current-regulated rectifiers, and superconducting magnetic energy storage. An “ideal” voltage source—that is often-sought-or-intentionally engineered—generates a constant voltage irrespective of its load current, and an “ideal” current source injects a constant current irrespective of its load voltage. However, two problems exist: (1) voltage or current sources do not represent many emerging natural/renewable energy sources such as wind turbine generators, photovoltaic cells, and fuel cells, whose output voltage and current are strongly dependent on each other, and (2) a short-circuit fault to an artificially-made and controlled “ideal” voltage source or an open-circuit fault to an “ideal” current source can cause catastrophic failures of the source itself and its surrounding circuits due to large (theoretically infinite) short-circuit current or open-circuit voltage. Here we introduce an impedance source concept to represent, characterize, and model those electricity sources whose output voltage and current are strongly dependent on each other. First, we found that many electric sources with no feedback (or active) control of their output voltage and/or current are a natural impedance source with inherent fault protection at short-circuit or open-circuit faults. Second, any electrical source can be artificially controlled to mimic a natural impedance source. Finally, we show how to apply natural impedance sources and nature-mimicking artificially-controlled sources to the electricity grid—the most complex machine ever made by human beings—to realize electricity grids that are naturally stable, self-protected against electrical faults, and resilient to natural and human-made events.

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2023/08/12/Maui-wildfire-one-of-deadliest-in-US-history

2. https://www.nytimes.com/2023/08/14/us/hawaiian-electric-maui-wildfire.html

3. https://www.cnn.com/2023/08/15/us/hawaii-maui-wildfires-death-toll-tuesday/index.html

4. https://www.theverge.com/2022/1/5/22868298/pge-utility-power-line-responsible-dixie-fire

5. Alexander, C. & Sadiku, M. Fundamentals of Electric Circuits, 7th Ed. (McGraw-Hill Education, 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3