Optimized removal of hexavalent chromium from water using spent tea leaves treated with ascorbic acid

Author:

Zaib Qammer,Kyung Daeseung

Abstract

AbstractSpent tea leaves were functionalized with ascorbic acid to obtain treated tea waste (t-TW) to encourage the adsorption of hexavalent chromium from water. The adsorption removal of Cr(VI) was systematically investigated as a function of four experimental factors: pH (2–12), initial Cr(VI) concentration (1–100 mg L−1), t-TW dosage (0–4 g L−1), and temperature (10–50 °C) by following a statistical experimental design. A central composite rotatable experimental design based on a response surface methodology was used to establish an empirical model that assessed the individual and combined effects of factors on adsorptive removal of Cr(VI). The model was experimentally verified and statistically validated then used to predict optimal adsorption removal of Cr(VI) from water. At optimized conditions, ≥ 99% of 1 mg L−1 Cr(VI) can be removed by 4 g L−1 t-TW at a pH of 9. The adsorptive mechanism was assessed by conducting kinetics and equilibrium studies. The adsorption of Cr(VI) by t-TW followed a pseudo-second-order kinetics model (k2 = 0.001 g mg−1 h−1) and could be described by Langmuir and Temkin isotherms, indicating monolayer adsorption and predominantly adsorbate-adsorbent interactions. The t-TW exhibited a competitive Cr(VI) adsorption capacity of 232.2 mg g−1 compared with the other low-cost adsorbents. These results support the utilization of tea waste for the removal of hazardous metal contaminants from aqueous systems.

Funder

University of Ulsan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference56 articles.

1. Mohan, D. & Pittman, C. U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006).

2. DesMarias, T. L. & Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 14, 1–7 (2019).

3. Krishnani, K. K. & Ayyappan, S. Heavy metals remediation of water using plants and lignocellulosic agrowastes. Rev. Environ. Contam. Toxicol. 188, 59–84 (2006).

4. Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 24, 1617–1629 (2011).

5. World Health Organization. Chromium in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality (WHO, 2020).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3