Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting

Author:

Pinigin Konstantin V.,Kondrashov Oleg V.,Jiménez-Munguía Irene,Alexandrova Veronika V.,Batishchev Oleg V.,Galimzyanov Timur R.,Akimov Sergey A.

Abstract

AbstractLiquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The desmosome as a dynamic membrane domain;Current Opinion in Cell Biology;2024-10

2. Corrections to the Electrical Capacitance of Deformed Lipid Membrane;Биологические мембраны Журнал мембранной и клеточной биологии;2024-06-14

3. Gramicidin A as a mechanical sensor for mixed nonideal lipid membranes;Physical Review E;2024-06-11

4. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs;Archives of Biochemistry and Biophysics;2024-04

5. Corrections to the Electrical Capacitance of Deformed Lipid Membrane;Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3