Author:
Ganjali Koli Mokhtar,Fogolari Federico
Abstract
AbstractThis study presents a comprehensive analysis of the cholesterol binding mechanism and conformational changes in cyclodextrin (CD) carriers, namely βCD, 2HPβCD, and MβCD. The results revealed that the binding of cholesterol to CDs was spontaneous and thermodynamically favorable, with van der Waals interactions playing a dominant role, while Coulombic interactions have a negligible contribution. The solubility of cholesterol/βCD and cholesterol/MβCD complexes was lower compared to cholesterol/2HPβCD complex due to stronger vdW and Coulombic repulsion between water and CDs. Hydrogen bonding was found to have a minor role in the binding process. The investigation of mechanisms and kinetics of binding demonstrated that cholesterol permeates into the CD cavities completely. Replicas consideration indicated that while the binding to 2HPβCD occurred perpendicularly and solely through positioning cholesterol's oxygen toward the primary hydroxyl rim (PHR), the mechanism of cholesterol binding to βCD and MβCD could take place with the orientation of oxygen towards both rims. Functionalization resulted in decreased cavity polarity, increased constriction tendency, and altered solubility and configuration of the carrier. Upon cholesterol binding, the CDs expanded, increasing the cavity volume in cholesterol-containing systems. The effects of cholesterol on the relative shape anisotropy (κ2) and asphericity parameter (b) in cyclodextrins were investigated. βCD exhibited a spherical structure regardless of cholesterol presence, while 2HPβCD and MβCD displayed more pronounced non-sphericity in the absence of cholesterol. Loading cholesterol transformed 2HPβCD and MβCD into more spherical shapes, with increased probabilities of higher κ2. MβCD showed a higher maximum peak of κ2 compared to 2HPβCD after cholesterol loading, while 2HPβCD maintained a significant maximum peak at 0.2 for b.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献