Fabrication of a state of the art mesh lock polymer for water based solid free drilling fluid

Author:

Wang Chaoqun,Ding Wei

Abstract

AbstractPolymers are used widely in various kinds of drilling fluid to maintain the proper rheological properties. However, most of them are not available for high-temperature or salt solutions due to poor temperature and salt resistance. To ameliorate the temperature and salt resistance of polymer used in the solid-free water-based drilling fluid, a novel polymer with a kind of "Mesh-Lock" reinforced network cross structure, named PLY-F [main monomer acrylic acid (AA), acrylamide (AM), functional monomers 2-acrylamide-2-methylpropanesulfonic acid (AMPS) N-vinylpyrrolidone (NVP) and C16DMAAC] were prepared through free radical polymerization of an aqueous solution of organic cross-linking agent pentaerythritol triallyl ether (PTE) as a cross-linking system, Potassium persulfate (KPS) and sodium bisulfite as the initiator for the first time. The surface morphology, crosslinking architecture and temperature and salt resistance of the PLY-F were fully characterized with several means including SEM, FT-IR, 13CNMR, dynamic rheology, and long-term thermal stability. The SEM observation indicated that the PLY-F exhibits a regular “Mesh-Lock” reinforced network cross structure. FT-IR, 13CNMR analysis indicated that the characteristic functional groups of each monomer such as AM, AA, AMPS and NVP were all together in the polymer. The results show that the apparent viscosity retention rate of the PLY-F in the potassium formate solution (with a density of 1.3 g/cm3) was more than 80% after heat rolling for 72 h at 200 °C and the plastic viscosity retention rate reached 90.3%. Moreover, the salt resistance of the polymer can reach the density of 1.4 g/cm3 (potassium formate solution) under 200 °C and the temperature resistance can reach 220 °C under the density of 1.3 g/cm3 (potassium formate solution). Besides, the PLY-F still has good rheological properties in other saturated solutions (NaCl, HCOONa) under 210 °C.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3