In-situ preparation of sulfonated carbonaceous copper oxide-zirconia nanocomposite as a novel and recyclable solid acid catalyst for reduction of 4-nitrophenol

Author:

Farrag Mostafa

Abstract

AbstractThe missing-linker defects of UiO-66 were exploited to covalently anchor Cu nanoclusters (Cu/UiO-66). The molecular interactions between the metals and oxides as copper-zirconia interfaces in Cu/UiO-66 are essential for heterogeneous catalysis, leading to remarkable synergistic impacts on activity and selectivity. Homogeneously distributed carbonaceous mixed metal oxides (CuO/ZrO2@C) nanocomposite was prepared via carbonization of the Cu/UiO-66 at 600 °C for 3 h in air. To enhance the acidity properties of the CuO/ZrO2@C nanocomposite, a small amount of sulfuric acid was added and heated at 150 °C under an N2 atmosphere (CuO/ZrO2-SO3H@C). The synthesised Cu/UiO-66 and CuO/ZrO2-SO3H@C catalysts were used as novel catalysts in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Cu/UiO-66 and CuO/ZrO2-SO3H@C catalysts displayed complete conversion of the 4-NP solution during (4 and 2 min) stirring at room temperature, respectively. These two catalysts exhibited a high reduction rate of 8.61 × 10–3 s−1, and 18.3 × 10–3 s−1, respectively. The X-ray photoelectron spectroscopic (XPS) analysis showed the charge of copper atoms in the Cu/UiO-66 catalyst was Cu0/CuII and in the CuO/ZrO2-SO3H@C catalyst was CuI/CuII with nearly the same ratio (65/35). The particle size and the elemental composition of the CuO/ZrO2-SO3H@C catalyst were analysed by using high resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS), and elemental mapping, respectively. The key point beyond the high catalytic activity and selectivity of the CuO/ZrO2-SO3H@C catalyst is both the carbon–metal oxides heterojunction structure that leads to good dispersion of the CuO and ZrO2 over the carbon sheets, and the high acidity properties that come from the combination between the Brønsted acid sites from sulfuric acid and Lewis acid sites from the UiO-66. The catalysts exhibited good recyclability efficiency without significant loss in activity, indicating their good potential for industrial applications.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3