Study on thermal insulation cement and its thermal insulation characteristics for geothermal wells

Author:

Zhou Wei,Wang Chengwen,Meng Renzhou,Chen Zehua,Lu Haoxin,Chi Jialun

Abstract

AbstractReducing the heat loss in wellbore is the key for efficient development of geothermal resource. It is a reliable solution to establish a long-term stable wellbore with good thermal insulation through cementing. In this paper, the cement-based composite thermal insulation material was prepared by using cement as the cementing material, hollow glass beads, foaming agent and stabilizer as main raw materials, and other conventional admixtures. Foams and hollow glass beads can introduce gas with low thermal conductivity into cement, so as to improve the thermal insulation of composite material. Foams are produced by chemical forming process, using foaming agent, which is prepared according electrochemistry and thermodynamics, and the foam stabilizer helps foam distribute in cement slurry stably and uniformly. 10–13% hollow glass beads can significantly reduce the thermal conductivity of hardened cement, without significant adverse effects on the rheology and strength of the material. The thermal conductivity of the composite thermal insulation material can be as low as 0.2998 W·(m·K)−1, which is 62% lower than that of conventional cement, while the compressive strength is 6.10 MPa, meeting the engineering requirement. A thermal-conductivity prediction method is proposed correspondingly based on Maxwell model, and the prediction error of the newly established model is within 2%. This research can provide technical support for efficient development of geothermal resources.

Funder

National Natural Science Foundation of China

Major Program of China National Petroleum Corporation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3