Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network

Author:

Pacheco Jennifer A.,Rasmussen Luke V.,Wiley Ken,Person Thomas Nate,Cronkite David J.,Sohn Sunghwan,Murphy Shawn,Gundelach Justin H.,Gainer Vivian,Castro Victor M.,Liu Cong,Mentch Frank,Lingren Todd,Sundaresan Agnes S.,Eickelberg Garrett,Willis Valerie,Furmanchuk Al’ona,Patel Roshan,Carrell David S.,Deng Yu,Walton Nephi,Satterfield Benjamin A.,Kullo Iftikhar J.,Dikilitas Ozan,Smith Joshua C.,Peterson Josh F.,Shang Ning,Kiryluk Krzysztof,Ni Yizhao,Li Yikuan,Nadkarni Girish N.,Rosenthal Elisabeth A.,Walunas Theresa L.,Williams Marc S.,Karlson Elizabeth W.,Linder Jodell E.,Luo Yuan,Weng Chunhua,Wei WeiQi

Abstract

AbstractThe electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.

Funder

National Human Genome Research Institute

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3