Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models

Author:

Jalali-najafabadi Farideh,Stadler Michael,Dand Nick,Jadon Deepak,Soomro Mehreen,Ho Pauline,Marzo-Ortega Helen,Helliwell Philip,Korendowych Eleanor,Simpson Michael A.,Packham Jonathan,Smith Catherine H.,Barker Jonathan N.,McHugh Neil,Warren Richard B.,Barton Anne,Bowes John,Smith Catherine H.,Barker Jonathan N.,Warren Richard B.,Dand Nick,Smith Catherine H., ,

Abstract

AbstractIn view of the growth of clinical risk prediction models using genetic data, there is an increasing need for studies that use appropriate methods to select the optimum number of features from a large number of genetic variants with a high degree of redundancy between features due to linkage disequilibrium (LD). Filter feature selection methods based on information theoretic criteria, are well suited to this challenge and will identify a subset of the original variables that should result in more accurate prediction. However, data collected from cohort studies are often high-dimensional genetic data with potential confounders presenting challenges to feature selection and risk prediction machine learning models. Patients with psoriasis are at high risk of developing a chronic arthritis known as psoriatic arthritis (PsA). The prevalence of PsA in this patient group can be up to 30% and the identification of high risk patients represents an important clinical research which would allow early intervention and a reduction of disability. This also provides us with an ideal scenario for the development of clinical risk prediction models and an opportunity to explore the application of information theoretic criteria methods. In this study, we developed the feature selection and psoriatic arthritis (PsA) risk prediction models that were applied to a cross-sectional genetic dataset of 1462 PsA cases and 1132 cutaneous-only psoriasis (PsC) cases using 2-digit HLA alleles imputed using the SNP2HLA algorithm. We also developed stratification method to mitigate the impact of potential confounder features and illustrate that confounding features impact the feature selection. The mitigated dataset was used in training of seven supervised algorithms. 80% of data was randomly used for training of seven supervised machine learning methods using stratified nested cross validation and 20% was selected randomly as a holdout set for internal validation. The risk prediction models were then further validated in UK Biobank dataset containing data on 1187 participants and a set of features overlapping with the training dataset.Performance of these methods has been evaluated using the area under the curve (AUC), accuracy, precision, recall, F1 score and decision curve analysis(net benefit). The best model is selected based on three criteria: the ‘lowest number of feature subset’ with the ‘maximal average AUC over the nested cross validation’ and good generalisability to the UK Biobank dataset. In the original dataset, with over 100 different bootstraps and seven feature selection (FS) methods, HLA_C_*06 was selected as the most informative genetic variant. When the dataset is mitigated the single most important genetic features based on rank was identified as HLA_B_*27 by the seven different feature selection methods, consistent with previous analyses of this data using regression based methods. However, the predictive accuracy of these single features in post mitigation was found to be moderate (AUC= 0.54 (internal cross validation), AUC=0.53 (internal hold out set), AUC=0.55(external data set)). Sequentially adding additional HLA features based on rank improved the performance of the Random Forest classification model where 20 2-digit features selected by Interaction Capping (ICAP) demonstrated (AUC= 0.61 (internal cross validation), AUC=0.57 (internal hold out set), AUC=0.58 (external dataset)). The stratification method for mitigation of confounding features and filter information theoretic feature selection can be applied to a high dimensional dataset with the potential confounders.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3