Flow dynamics through discontinuous clogs of rigid particles in tapered microchannels

Author:

Majekodunmi Olukayode T.,Hashmi Sara M.

Abstract

AbstractSuspended particles flowing through complex porous spaces exhibit clogging mechanisms determined by factors including their size, deformability, and the geometry of the confinement. This study describes the clogging of rigid particles in a microfluidic device made up of parallel microchannels that taper from the inlet to the outlet, where the constriction width is approximately equal to the particle size. This converging geometry summarizes the dynamics of clogging in flow channels with constrictions that narrow over multiple length scales. Our novel approach allows the investigation of suspension flow dynamics in confined systems where clogs are formed both by sieving and bridging mechanisms simultaneously. Here, flow tests are conducted at constant driving pressures for different particle volume fractions, and a power-law decay which appears to be peculiar to the channels’ tapered geometry is observed in all cases. Compared to non-tapered channels, the power-law behavior shows flowrate decay is significantly weaker in tapered channels. This weaker flowrate decay is explained by the formation of discontinuous clogs within each channel. Micrographs of the clogged channels reveal clogs do not grow continuously from their initial positions around the channels’ outlet. Rather, new clogs spanning the width of the channel at their points of inception are successively formed as the cake grows toward the inlet area in each microchannel. The results show changes in particle volume fraction at constant driving pressure affect the clogging rate without impacting the underlying dynamics. Unexpectedly, analyses of the particles packing behavior in the microchannels, and post-clogging permeability of the microfluidic devices, reveal the presence of two distinct regimes of driving pressure, though only a small portion of the total device volume and channels surface area are occupied by clogs, regardless of the particle volume fraction. This novel investigation of discontinuous clogging over multiple particle diameters provides unique insights into additional mechanisms to control flow losses in filtration and other confined systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3