Author:
Guo Jia,Zhou Guoyuan,Yan Ke,Sato Yuji,Di Yi
Abstract
AbstractHigh-dimensional optimization presents a novel challenge within the realm of intelligent computing, necessitating innovative approaches. When tackling high-dimensional spaces, traditional evolutionary tools often encounter pitfalls, including dimensional catastrophes and a propensity to become trapped in local optima, ultimately compromising result accuracy. To address this issue, we introduce the Pair Barracuda Swarm Optimization (PBSO) algorithm in this paper. PBSO employs a unique strategy for constructing barracuda pairs, effectively mitigating the challenges posed by high dimensionality. Furthermore, we enhance global search capabilities by incorporating a support barracuda alongside the leading barracuda pair. To assess the algorithm’s performance, we conduct experiments utilizing the CEC2017 standard function and compare PBSO against five state-of-the-art natural-inspired optimizers in the control group. Across 29 test functions, PBSO consistently secures top rankings with 9 first-place, 13 second-place, 5 third-place, 1 fourth-place, and 1 fifth-place finishes, yielding an average rank of 2.0345. These empirical findings affirm that PBSO stands as the superior choice among all test algorithms, offering a dependable solution for high-dimensional optimization challenges.
Funder
Education Department Scientific Research Program Project of Hubei Province of China
Japan Society for the Promotion of Science
Natural Science Foundation of Hubei Province
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献