Impact of complex boundary on the hydrodynamic properties of methane nanofluidic flow via non-equilibrium multiscale molecular dynamics simulation

Author:

Jiang Chuntao,Li Wuming,Liu Qingsheng

Abstract

AbstractUnderstanding the impact of complex boundary on the hydrodynamic properties of methane nanofluidic is significant for production optimization and design of energy-saving emission reduction devices. In the molecule scale, however, the microscopic mechanisms of the influence of the complex boundary on the hydrodynamic characteristics are still not well understood. In this study, a mixture boundary Poiseuille flow model is proposed to study the hydrodynamic properties and explore the molecular mechanisms of confined methane nanofluidic using the Non-equilibrium multiscale molecular dynamics simulation (NEMSMD). In order to investigate the influences of nonslip and rough boundary on hydrodynamic behavior of nanofluidic by the present model in one simulation, the coordinate transformation methods regarding the local symmetry is showed. Simulation results show that the atom number density, velocity and temperature profiles present significant differences near the nonslip boundary and rough wall surface. Moreover, the slip length of methane nanofluidic near the rough boundary decreases with the increasing of the temperature. Furthermore, the viscosity values are calculated by parabolic fit of the local velocity data based on the present model, which demonstrates that the impact of the nonslip boundary on the shear viscosity compared with the experiment result is less than one obtained using the rough boundary. In addition, the local contours of rotational and translational energy are plotted, which show that the rotational and translational energies of nonslip boundary are obvious higher than those of rough boundary. These numerical results are very significant in understanding the impact of complex boundary conditions on hydrodynamic properties in nanofluidic theory and the design of nano-devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale simulations of nanofluidics: Recent progress and perspective;WIREs Computational Molecular Science;2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3