Population-specific signatures of intra-individual mitochondrial DNA heteroplasmy and their potential evolutionary advantages

Author:

Tikochinski Yaron,Carreras CarlosORCID,Tikochinski Gili,Vilaça Sibelle T.ORCID

Abstract

AbstractHeteroplasmy is the existence of more than one mitochondrial DNA (mtDNA) variant within a cell. The evolutionary mechanisms of heteroplasmy are not fully understood, despite being a very common phenomenon. Here we combined heteroplasmy measurements using high throughput sequencing on green turtles (Chelonia mydas) with simulations to understand how heteroplasmy modulates population diversity across generations and under different demographic scenarios. We found heteroplasmy to be widespread in all individuals analysed, with consistent signal in individuals across time and tissue. Significant shifts in haplotype composition were found from mother to offspring, signalling the effect of the cellular bottleneck during oogenesis as included in the model. Our model of mtDNA inheritance indicated that heteroplasmy favoured the increase of population diversity through time and buffered against population bottlenecks, thus indicating the importance of this phenomenon in species with reduced population sizes and frequent population bottlenecks like marine turtles. Individuals with recent haplotypes showed higher levels of heteroplasmy than the individuals with ancient haplotypes, suggesting a potential advantage of maintaining established copies when new mutations arise. We recommend using heteroplasmy through high throughput sequencing in marine turtles, as well as other wildlife populations, for diversity assessment, population genetics, and mixed stock analysis.

Funder

EC | European Regional Development Fund

Generalitat de Catalunya

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3