Dual contrastive learning based image-to-image translation of unstained skin tissue into virtually stained H&E images

Author:

Asaf Muhammad Zeeshan,Rao Babar,Akram Muhammad Usman,Khawaja Sajid Gul,Khan Samavia,Truong Thu Minh,Sekhon Palveen,Khan Irfan J.,Abbasi Muhammad Shahmir

Abstract

AbstractStaining is a crucial step in histopathology that prepares tissue sections for microscopic examination. Hematoxylin and eosin (H&E) staining, also known as basic or routine staining, is used in 80% of histopathology slides worldwide. To enhance the histopathology workflow, recent research has focused on integrating generative artificial intelligence and deep learning models. These models have the potential to improve staining accuracy, reduce staining time, and minimize the use of hazardous chemicals, making histopathology a safer and more efficient field. In this study, we introduce a novel three-stage, dual contrastive learning-based, image-to-image generative (DCLGAN) model for virtually applying an "H&E stain" to unstained skin tissue images. The proposed model utilizes a unique learning setting comprising two pairs of generators and discriminators. By employing contrastive learning, our model maximizes the mutual information between traditional H&E-stained and virtually stained H&E patches. Our dataset consists of pairs of unstained and H&E-stained images, scanned with a brightfield microscope at 20 × magnification, providing a comprehensive set of training and testing images for evaluating the efficacy of our proposed model. Two metrics, Fréchet Inception Distance (FID) and Kernel Inception Distance (KID), were used to quantitatively evaluate virtual stained slides. Our analysis revealed that the average FID score between virtually stained and H&E-stained images (80.47) was considerably lower than that between unstained and virtually stained slides (342.01), and unstained and H&E stained (320.4) indicating a similarity virtual and H&E stains. Similarly, the mean KID score between H&E stained and virtually stained images (0.022) was significantly lower than the mean KID score between unstained and H&E stained (0.28) or unstained and virtually stained (0.31) images. In addition, a group of experienced dermatopathologists evaluated traditional and virtually stained images and demonstrated an average agreement of 78.8% and 90.2% for paired and single virtual stained image evaluations, respectively. Our study demonstrates that the proposed three-stage dual contrastive learning-based image-to-image generative model is effective in generating virtual stained images, as indicated by quantified parameters and grader evaluations. In addition, our findings suggest that GAN models have the potential to replace traditional H&E staining, which can reduce both time and environmental impact. This study highlights the promise of virtual staining as a viable alternative to traditional staining techniques in histopathology.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual staining for histology by deep learning;Trends in Biotechnology;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3