Role of endothelial microvesicles released by p-cresol on endothelial dysfunction

Author:

Guerrero Fatima,Carmona Andres,Obrero Teresa,Jiménez Maria Jose,Soriano Sagrario,Moreno Juan Antonio,Martín-Malo Alejandro,Aljama Pedro

Abstract

AbstractProtein bound uremic toxins, such as p-cresol, cannot be effectively removed by conventional dialysis techniques and are accumulated in plasma, thus contributing to progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD). Pathological effects of uremic toxins include activation of inflammatory response, endothelial dysfunction and release of endothelial microvesicles. To date, the role of p-cresol in endothelial microvesicles formation has not been analyzed. The aim of the present study was evaluate the effects of endothelial microvesicles released by p-cresol (PcEMV) on endothelial dysfunction. An in vitro model of endothelial damage mediated by p-cresol was proposed to evaluate the functional effect of PcEMV on the endothelial repair process carried out by endothelial cells and microRNA (miRNA) that could be involved in this process. We observed that p-cresol induced a greater release of microvesicles in endothelial cells. These microvesicles altered regenerative capacity of endothelial cells, decreasing their capacity for cell migration and their potential to form vascular structures in vitro. Moreover, we observed increased cellular senescence and a deregulation of miRNA-146b-5p and miRNA-223-3p expression in endothelial cells treated with endothelial microvesicles released by p-cresol. In summary our data show that microvesicles generated in endothelial cells treated with p-cresol (PcEMV) interfere with the endothelial repair process by decreasing the migratory capacity, the ability to form new vessels and increasing the senescence of mature endothelial cells. These alterations could be mediated by the upregulation of miRNA-146b-5p and miRNA-223-3p.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3