Author:
Yang Zijiang,Papanikolaou Stefanos,Reid Andrew C. E.,Liao Wei-keng,Choudhary Alok N.,Campbell Carelyn,Agrawal Ankit
Abstract
AbstractThe density and configurational changes of crystal dislocations during plastic deformation influence the mechanical properties of materials. These influences have become clearest in nanoscale experiments, in terms of strength, hardness and work hardening size effects in small volumes. The mechanical characterization of a model crystal may be cast as an inverse problem of deducing the defect population characteristics (density, correlations) in small volumes from the mechanical behavior. In this work, we demonstrate how a deep residual network can be used to deduce the dislocation characteristics of a sample of interest using only its surface strain profiles at small deformations, and then statistically predict the mechanical response of size-affected samples at larger deformations. As a testbed of our approach, we utilize high-throughput discrete dislocation simulations for systems of widths that range from nano- to micro- meters. We show that the proposed deep learning model significantly outperforms a traditional machine learning model, as well as accurately produces statistical predictions of the size effects in samples of various widths. By visualizing the filters in convolutional layers and saliency maps, we find that the proposed model is able to learn the significant features of sample strain profiles.
Publisher
Springer Science and Business Media LLC
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献