Biomolecular simulation based machine learning models accurately predict sites of tolerability to the unnatural amino acid acridonylalanine

Author:

Giannakoulias Sam,Shringari Sumant R.,Ferrie John J.,Petersson E. James

Abstract

AbstractThe incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries to be explored in biological systems. However, the successful application of Uaas is often hampered by site-specific impacts on protein yield and solubility. Although previous efforts to identify features which accurately capture these site-specific effects have been unsuccessful, we have developed a set of novel Rosetta Custom Score Functions and alternative Empirical Score Functions that accurately predict the effects of acridon-2-yl-alanine (Acd) incorporation on protein yield and solubility. Acd-containing mutants were simulated in PyRosetta, and machine learning (ML) was performed using either the decomposed values of the Rosetta energy function, or changes in residue contacts and bioinformatics. Using these feature sets, which represent Rosetta score function specific and bioinformatics-derived terms, ML models were trained to predict highly abstract experimental parameters such as mutant protein yield and solubility and displayed robust performance on well-balanced holdouts. Model feature importance analyses demonstrated that terms corresponding to hydrophobic interactions, desolvation, and amino acid angle preferences played a pivotal role in predicting tolerance of mutation to Acd. Overall, this work provides evidence that the application of ML to features extracted from simulated structural models allow for the accurate prediction of diverse and abstract biological phenomena, beyond the predictivity of traditional modeling and simulation approaches.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3