Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination

Author:

Graham Kelsey K.,Milbrath Meghan O.,Zhang Yajun,Soehnlen Annuet,Baert Nicolas,McArt Scott,Isaacs Rufus

Abstract

AbstractBees are critical for crop pollination, but there is limited information on levels and sources of pesticide exposure in commercial agriculture. We collected pollen from foraging honey bees and bumble bees returning to colonies placed in blooming blueberry fields with different management approaches (conventional, organic, unmanaged) and located across different landscape settings to determine how these factors affect pesticide exposure. We also identified the pollen and analyzed whether pesticide exposure was correlated with corbicular load composition. Across 188 samples collected in 2 years, we detected 80 of the 259 pesticide active ingredients (AIs) screened for using a modified QuEChERS method. Detections included 28 fungicides, 26 insecticides, and 21 herbicides. All samples contained pesticides (mean = 22 AIs per pollen sample), with pollen collected from bees on conventional fields having significantly higher average concentrations (2019 mean = 882.0 ppb) than those on unmanaged fields (2019 mean = 279.6 ppb). Pollen collected by honey bees had more AIs than pollen collected by bumble bees (mean = 35 vs. 19 AIs detected at each farm, respectively), whereas samples from bumble bees had higher average concentrations, likely reflecting differences in foraging behavior. Blueberry pollen was more common in pollen samples collected by bumble bees (25.9% per sample) than honey bees (1.8%), though pesticide concentrations were only correlated with blueberry pollen for honey bees. Pollen collected at farms with more blueberry in the surrounding landscape had higher pesticide concentrations, mostly AIs applied for control of blueberry pathogens and pests during bloom. However, for honey bees, the majority of AIs detected at each farm are not registered for use on blueberry at any time (55.2% of AIs detected), including several highly toxic insecticides. These AIs therefore came from outside the fields and farms they are expected to pollinate. For bumble bees, the majority of AIs detected in their pollen are registered for use on blueberry during bloom (56.9% of AIs detected), though far fewer AIs were sprayed at the focal farm (16.7%). Our results highlight the need for integrated farm and landscape-scale stewardship of pesticides to reduce exposure to pollinators during crop pollination.

Funder

Project GREEEN

USDA NIFA

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference65 articles.

1. Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274(66 95–96), 191 (2007).

2. Pesticides in Agriculture and the Environment. (Marcel Dekker, 2002).

3. Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).

4. Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS One 9, 20 (2014).

5. Mullin, C. A. et al. High levels of miticides and agrochemicals in North American Apiaries: Implications for honey bee health. PLoS One 5, e9754 (2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3