The distributional properties of exemplars affect category learning and generalization

Author:

Carvalho Paulo F.,Chen Chi-hsin,Yu Chen

Abstract

AbstractWhat we learn about the world is affected by the input we receive. Many extant category learning studies use uniform distributions as input in which each exemplar in a category is presented the same number of times. Another common assumption on input used in previous studies is that exemplars from the same category form a roughly normal distribution. However, recent corpus studies suggest that real-world category input tends to be organized around skewed distributions. We conducted three experiments to examine the distributional properties of the input on category learning and generalization. Across all studies, skewed input distributions resulted in broader generalization than normal input distributions. Uniform distributions also resulted in broader generalization than normal input distributions. Our results not only suggest that current category learning theories may underestimate category generalization but also challenge current theories to explain category learning in the real world with skewed, instead of the normal or uniform distributions often used in experimental studies.

Funder

National Science Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference33 articles.

1. Goldstone, R. L., Kersten, A. & Carvalho, P. F. Concepts and categorization. In Handbook of Psychology, Volume 4: Experimental Psychology (eds Weiner, I. et al.) 607–630 (Wiley, 2012).

2. Ashby, F. G. & Maddox, W. T. Human category learning. Annu. Rev. Psychol. 56, 149–178 (2005).

3. Goldstone, R. L. Perceptual learning. Annu. Rev. Psychol. 49, 585–612 (1998).

4. Werker, J. F., Yeung, H. H. & Yoshida, K. A. How do infants become experts at native-speech perception?. Curr. Dir. Psychol. Sci. 21, 221–226 (2012).

5. Bambach, S., Crandall, D., Smith, L. & Yu, C. Toddler-inspired visual object learning. In Advances in Neural Information Processing Systems (eds Bengio, S. et al.) 1201–1210 (Curran Associates, Inc., 2018).

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3