Uncertainty-aware deep learning for trustworthy prediction of long-term outcome after endovascular thrombectomy

Author:

Martín Vicario Celia,Rodríguez Salas Dalia,Maier Andreas,Hock Stefan,Kuramatsu Joji,Kallmuenzer Bernd,Thamm Florian,Taubmann Oliver,Ditt Hendrik,Schwab Stefan,Dörfler Arnd,Muehlen Iris

Abstract

AbstractAcute ischemic stroke (AIS) is a leading global cause of mortality and morbidity. Improving long-term outcome predictions after thrombectomy can enhance treatment quality by supporting clinical decision-making. With the advent of interpretable deep learning methods in recent years, it is now possible to develop trustworthy, high-performing prediction models. This study introduces an uncertainty-aware, graph deep learning model that predicts endovascular thrombectomy outcomes using clinical features and imaging biomarkers. The model targets long-term functional outcomes, defined by the three-month modified Rankin Score (mRS), and mortality rates. A sample of 220 AIS patients in the anterior circulation who underwent endovascular thrombectomy (EVT) was included, with 81 (37%) demonstrating good outcomes (mRS$$\le$$ 2). The performance of the different algorithms evaluated was comparable, with the maximum validation under the curve (AUC) reaching 0.87 using graph convolutional networks (GCN) for mRS prediction and 0.86 using fully connected networks (FCN) for mortality prediction. Moderate performance was obtained at admission (AUC of 0.76 using GCN), which improved to 0.84 post-thrombectomy and to 0.89 a day after stroke. Reliable uncertainty prediction of the model could be demonstrated.

Funder

Bayern Innovative funding agency

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3