Tele-monitoring system for intensive care ventilators in isolation rooms

Author:

Kim Su Hyeon,Seo Hyo-Chang,Choi Sanghoon,Joo Segyeong

Abstract

AbstractThe COVID-19 pandemic and discovery of new mutant strains have a devastating impact worldwide. Patients with severe COVID-19 require various equipment, such as ventilators, infusion pumps, and patient monitors, and a dedicated medical team to operate and monitor the equipment in isolated intensive care units (ICUs). Medical staff must wear personal protective equipment to reduce the risk of infection. This study proposes a tele-monitoring system for isolation ICUs to assist in the monitoring of COVID-19 patients. The tele-monitoring system consists of three parts: medical-device panel image processing, transmission, and tele-monitoring. This system can monitor the ventilator screen with obstacles, receive and store data, and provide real-time monitoring and data analysis. The proposed tele-monitoring system is compared with previous studies, and the image combination algorithm for reconstruction is evaluated using structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). The system achieves an SSIM score of 0.948 in the left side and a PSNR of 23.414 dB in the right side with no obstacles. It also reduces blind spots, with an SSIM score of 0.901 and a PSNR score of 18.13 dB. The proposed tele-monitoring system is compatible with both wired and wireless communication, making it accessible in various situations. It uses camera and performs live data monitoring, and the two monitoring systems complement each other. The system also includes a comprehensive database and an analysis tool, allowing medical staff to collect and analyze data on ventilator use, providing them a quick, at-a-glance view of the patient's condition. With the implementation of this system, patient outcomes may be improved and the burden on medical professionals may be reduced during the COVID-19 pandemic-like situations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3