Author:
Ryu Dae Sung,Won Dong-Sung,Kim Ji Won,Park Yubeen,Kim Song Hee,Kang Jeon Min,Zeng Chu Hui,Lim Dohyung,Choi Hyun,Park Jung-Hoon
Abstract
AbstractStent-grafts composed of expanded polytetrafluoroethylene (e-PTFE), polyethylene terephthalate (PET) and polyurethane (PU) are characterized by poor endothelialization, high modulus, and low compliance, leading to thrombosis and intimal hyperplasia. A composite synthetic/natural matrix is considered a promising alternative to conventional synthetic stent-grafts. This study aimed to investigate the efficacy of thermoplastic polyurethane (TPU) and gelatin (GL) blended nanofibers (NFs) covered stent-graft in the porcine iliac artery. Twelve pigs were randomly sacrificed 7 days (n = 6) and 28 days (n = 6) after stent-graft placement. The thrombogenicity score at 28 days was significantly increased compared at 7 days (p < 0.001). The thickness of neointimal hyperplasia, degree of inflammatory cell infiltration, and degree of collagen deposition were significantly higher at 28 days than at 7 days (all p < 0.001). The TPU and GL blended NFs-covered stent-grafts successfully maintained the patency for 28 days in the porcine iliac artery. Although thrombosis with neointimal tissue were observed, no subsequent occlusion of the stent-graft was noted until the end of the study. Composite synthetic/natural matrix-covered stent-grafts may be promising for prolonging stent-graft patency.
Funder
Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献