Discovering and comparing types of general practitioner practices using geolocational features and prescribing behaviours by means of K-means clustering

Author:

Booth Frederick G.ORCID,R Bond Raymond,D Mulvenna Maurice,Cleland Brian,McGlade Kieran,Rankin Debbie,Wallace Jonathan,Black Michaela

Abstract

AbstractTraditionally General Practitioner (GP) practices have been labelled as being in Rural, Urban or Semi-Rural areas with no statistical method of identifying which practices fall into each category. The main aim of this study is to investigate whether location and other characteristics can provide a tautology to identify different types of GP practice and compare the prescribing behaviours associated with the different practice types. To achieve this monthly open source prescription data were analysed by practice considering location, practice size, population density and deprivation rankings. One year’s data was subjected to k-means clustering with the results showing that only two different types of GP practice can be classified that are dependent on location characteristics in Northern Ireland. Traditional labels did not describe the two classifications fully and new classifications of Metropolitan and Non-Metropolitan were used. Whilst prescribing patterns were generally similar, it was found that Metropolitan practices generally had higher prescribing rates than Non-Metropolitan practices. Examining prescribing behaviours in accordance with British National Formulary (BNF) categories (known as chapters) showed that Chapter 4 (Central Nervous System) was responsible for most of the difference in prescribing levels. Within Chapter 4 higher prescribing levels were attributable to Analgesic and Antidepressant prescribing. The clusters were finally examined regarding the level of deprivation experienced in the area in which the practice was located. This showed that the Metropolitan cluster, having higher prescription rates, also had a higher proportion of practices located in highly deprived areas making deprivation a contributing factor.

Funder

Department for the Economy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3