Low rates of bacterivory enhances phototrophy and competitive advantage for mixoplankton growing in oligotrophic waters

Author:

Mitra Aditee,Flynn Kevin J.

Abstract

AbstractWith climate change, oceans are becoming increasingly nutrient limited, favouring growth of prokaryotic picoplankton at the expense of the larger protist plankton whose growth support higher trophic levels. Constitutive mixoplankton (CM), microalgal plankton with innate phototrophic capability coupled with phagotrophy, graze on these picoplankton, indirectly exploiting the excellent resource acquisition abilities of the prokaryotes. However, feeding rates can be very low (e.g., a few bacteria d−1). For the first time, the significance of such low consumption rates has been quantified. We find that while prokaryote-carbon (C) supply to CM grown at non-limiting light was so low that it may appear insignificant (< 10%), contributions of nitrogen (N) and phosphorus (P) from ingestions of 1–12 prokaryotes d−1 were significant. Under limiting light, contributions of ingested C increased, also raising the contributions of N and P. The order of nutritional importance for CM growth from predation was P > N > C. Further, provision of N through internal recycling of ingested prey-N stimulates C-fixation through photosynthesis. Importantly, coupled photo-phago-mixoplanktonic activity improved CM resource affinities for both inorganic and prey-bound nutrients, enhancing the nutritional status and competitiveness of mixoplankton. With warming oceans, with increased prokaryote abundance, we expect CM to exhibit more phagotrophy.

Funder

H2020 Marie Skłodowska-Curie Actions

European Regional Development Fund

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3