Author:
Sanchez Georgina M.,Petrasova Anna,Skrip Megan M.,Collins Elyssa L.,Lawrimore Margaret A.,Vogler John B.,Terando Adam,Vukomanovic Jelena,Mitasova Helena,Meentemeyer Ross K.
Abstract
AbstractImpacts of sea level rise will last for centuries; therefore, flood risk modeling must transition from identifying risky locations to assessing how populations can best cope. We present the first spatially interactive (i.e., what happens at one location affects another) land change model (FUTURES 3.0) that can probabilistically predict urban growth while simulating human migration and other responses to flooding, essentially depicting the geography of impact and response. Accounting for human migration reduced total amounts of projected developed land exposed to flooding by 2050 by 5%–24%, depending on flood hazard zone (50%–0.2% annual probability). We simulated various “what-if” scenarios and found managed retreat to be the only intervention with predicted exposure below baseline conditions. In the business-as-usual scenario, existing and future development must be either protected or abandoned to cope with future flooding. Our open framework can be applied to different regions and advances local to regional-scale efforts to evaluate potential risks and tradeoffs.
Funder
U.S. Geological Survey Southeast Climate Adaptation Science Center
U.S. Department of Agriculture, National Institute of Food and Agriculture, McIntire-Stennis
U.S. National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献