Multi-scale-average-filter-assisted level set segmentation model with local region restoration achievements

Author:

Mabood Lutful,Badshah Noor,Ali Haider,Zakarya Muhammad,Ahmed Aftab,Khan Ayaz Ali,Rada Lavdie,Haleem Muhammad

Abstract

AbstractSegmentation of noisy images having light in the background it is a challenging task for the existing segmentation approaches and methods. In this paper, we suggest a novel variational method for joint restoration and segmentation of noisy images which are having intensity and inhomogeneity in the existence of high contrast light in the background. The proposed model combines statistical local region information of circular regions centered at each pixel with a multi-phase segmentation technique enabling inhomogeneous image restoration. The proposed model is written in the fuzzy set framework and resolved through alternating direction minimization approach of multipliers. Through experiments, we have tested the performance of the suggested approach on diverse types of synthetic and real images in the existence of intensity and in-homogeneity; and evaluate the precision, as well as, the robustness of the suggested model. Furthermore, the outcomes are, then, compared with other state-of-the-art models including two-phase and multi-phase approaches and show that our method has superiority for images in the existence of noise and inhomogeneity. Our empirical evaluation and experiments, using real images, evaluate and assess the efficiency of the suggested model against several other closest rivals. We observed that the suggested model can precisely segment all the images having brightness, diffuse edges, high contrast light in the background, and inhomogeneity.

Funder

Abdul Wali Khan University Mardan

Kardan University, Kabul

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3