Wing Interferential Patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification

Author:

Cannet Arnaud,Simon-Chane Camille,Akhoundi Mohammad,Histace Aymeric,Romain Olivier,Souchaud Marc,Jacob Pierre,Delaunay Pascal,Sereno Darian,Bousses Philippe,Grebaut Pascal,Geiger Anne,de Beer Chantel,Kaba Dramane,Sereno Denis

Abstract

AbstractA simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven’t been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference45 articles.

1. Cockerell, T. D. A. A Fossil Tsetse-fly in Colorado. Nature 76, 414–414. https://doi.org/10.1038/076414b0 (1907).

2. Pollock, J. N. Tsetse biology, systematics and distribution, techniques. Training Manual for Tsetse Control Personnel. . (Food and Agriculture Organization of the United Nations., 1992).

3. Stephen, L. E. Pig Trypanosomiasis in Africa. Review Series, Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, England. 8, 65 (1966).

4. Desquesnes, M. et al. A review on the diagnosis of animal trypanosomoses. Parasit Vectors 15, 64. https://doi.org/10.1186/s13071-022-05190-1 (2022).

5. Desquesnes, M. et al. Diagnosis of animal trypanosomoses: proper use of current tools and future prospects. Parasit Vectors 15, 235. https://doi.org/10.1186/s13071-022-05352-1 (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3